Mining the Customer Credit Using Classification and Regression Tree and Multivariate Adaptive Regression Splines
نویسندگان
چکیده
Credit scoring has become a very important task as the credit industry has been experiencing severe competition during the past few years. The artificial neural network is becoming a very popular alternative in credit scoring models due to its associated memory characteristic and generalization capability. However, the relative importance of potential input variables, long training process and interpretative difficulties have often been criticized and hence limited its application in handling credit scoring problems. The objective of the proposed study is to explore the performance of credit scoring using two commonly discussed data mining techniques-classification and regression tree (CART) and multivariate adaptive regression splines (MARS). To demonstrate the effectiveness of credit scoring using CART and MARS, credit scoring tasks are performed on one bank credit card dataset. As the results reveal, CART and MARS outperform traditional discriminant analysis, logistic regression, neural networks, and support vector machine (SVM) approaches in terms of credit scoring accuracy and hence provide efficient alternatives in implementing credit scoring tasks.
منابع مشابه
A Bayesian latent variable model with classification and regression tree approach for behavior and credit scoring
A Bayesian latent variable model with classification and regression tree approach is built to overcome three challenges encountered by a bank in credit-granting process. These three challenges include (1) the bank wants to predict the future performance of an applicant accurately; (2) given current information about cardholders’ credit usage and repayment behavior, financial institutions would ...
متن کاملESTIMATING DRYING SHRINKAGE OF CONCRETE USING A MULTIVARIATE ADAPTIVE REGRESSION SPLINES APPROACH
In the present study, the multivariate adaptive regression splines (MARS) technique is employed to estimate the drying shrinkage of concrete. To this purpose, a very big database (RILEM Data Bank) from different experimental studies is used. Several effective parameters such as the age of onset of shrinkage measurement, age at start of drying, the ratio of the volume of the sample on its drying...
متن کاملCustomer attrition in retailing: An application of Multivariate Adaptive Regression Splines
The profit resulting from customer relationship is essential to ensure companies viability, so an improvement in customer retention is crucial for competitiveness. As such, companies have recognized the importance of customer centered strategies and consequently customer relationship management (CRM) is often at the core of their strategic plans. In this context, a priori knowledge about the ri...
متن کاملA Novel Method for Disease Prediction: Hybrid of Random Forest and Multivariate Adaptive Regression Splines
Using data mining technology for disease prediction and diagnosis has become the focus of attention. Data mining technology provides an important means for extracting valuable medical rules hidden in medical data and acts as an important role in disease prediction and clinical diagnosis. This paper surveys some kind of popular data mining techniques for disease prediction and diagnosis, such as...
متن کاملData Mining and Hotspot Detection in an Urban Development Project
Modern statistical analysis often involves large amount of data from many application areas with diverse data types and complicated data structures. This paper gives a brief survey of certain large-scale applications. In addition, this paper compares a number of data mining tools in the study of a specific data set which has 1.4 million cases, 14 predictors and a binary response variable. The s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computational Statistics & Data Analysis
دوره 50 شماره
صفحات -
تاریخ انتشار 2003